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Abstract 

In this paper, we present several verifiable conditions for eigenvalue intervals of 
real symmetric interval matrices overlapping or not overlapping. To above cases, 
two new methods with algorithms for computing eigenvalue bounds of real 
symmetric matrices are developed. We can estimate eigenvalue bounds moving 
away the assumption that two intervals containing two eigenvalues of real 
symmetric interval matrices are not overlapping. These methods can analyse 
stability of systems in control fields extensively. Numerical examples illustrating 
the applicability and effectiveness of the new methods are also provided. 
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1. Introduction 

Many real-life problems suffer from diverse uncertainties, as a result 
of inaccuracy of measurements, errors in manufacture, etc. Therefore, the 
concept of uncertainty is becoming more and more important. Probability 
theory is the traditional approach to handling uncertainty. This approach 
requires sufficient statistical data to justify the assumed statistical 
distributions. Analysis agrees that, given sufficient statistical data, the 
probability theory describes the stochastic uncertainty well. However, 
probabilistic modelling cannot handle situations with incomplete or little 
information on which to evaluate a probability, or when that information 
is nonspecific, ambiguous, or conflicting. In the mid sixties, the interval 
analysis was proposed [5]. It turns out to be a very powerful technique to 
study the variations of a system and to understand its uncertainty. One 
of the most important properties of this approach is the fact that, it is 
possible to certify the results of all the states of a system. 

The problem of computing the eigenvalue bounds of interval matrices 
has been studied since the nineties. Deif [1] firstly considered the interval 
eigenvalue problem, and gave the range of eigenvalues of an interval 
matrix [9]. They proposed the exact bounds under certain assumptions on 
the sign pattern invariancy of the corresponding eigenvectors, such 
assumptions are not easy to verify [2]. Qiu [6] presented some theoretical 
results based on an interval perturbation approximating formula. 
However, it can only produce approximate, but not true bounds for 
eigenvalues. Qiu [7] dealed with the standard interval eigenvalue 
problem by using the vertex solution theorem and the parameter 
decomposition solution theorem. Rohn [10] proved several theorems for 
the real eigenvalues under three assumptions. Zhan [11] presented the 
range of the smallest and largest eigenvalues of real symmetric interval 
matrices. Leng [3] obtained the eigenvalue bounds of the original interval 
eigenvalue problem based on the matrix perturbation. This method is 
very simple and unconditional, but the bounds are not very sharp. Leng 
[4] presented a new method with two algorithms for computing bounds to 
real eigenvalues of real-interval matrices. But, they supposed that two 
intervals containing two eigenvalues of the interval eigenvalue problem 
are not overlapping. 
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In this paper, we firstly give several simple verifiable conditions 
justifying eigenvalue intervals of real symmetric interval matrices 
overlapping or not overlapping. Then, two new methods with algorithms 
for computing eigenvalue bounds of real symmetric matrices are showed. 
When eigenvalue intervals occur overlapping, the eigenvalue bounds can 
also be obtained by these methods, which other methods have the 
additional conditions. 

2. Bounds of Interval Eigenvalues 

Consider the real symmetric interval eigenvalue problem 

.uAu λ=  (1) 

Here ,IAA ∈  interval matrix IA  is defined as 

[ ] { },;, AAARAAAA nnI ≤≤∈== ×   (2) 

where ,;, AARAA nn ≤∈ ×  are given symmetric matrices. It is important 

to note that not every matrix in IA  is symmetric. Here, we only consider 
the symmetric matrices, and the non-symmetric parts are considered in 
our future paper. By 
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we denote the midpoint and the radius of ,IA  respectively. 

λ  is the eigenvalue of the uncertain-but-bounded matrix A and u is 
the corresponding eigenvector of .λ  For a given real symmetric interval 

matrix ,IA  find an eigenvalue interval Iλ  defined by 

[ ] ( ) [ ],,,, ii
I
i

I
i

I λλ=λλ=λλ=λ  

such that it encloses all possible eigenvalues λ  satisfying ,uAu λ=  

where ,IAA ∈  and also it should be as small as possible. 
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Since the eigenvalues are now not only the points, but also the 
intervals. There may be occurring overlapping of eigenvalue intervals. We 
give some justified conditions are based on the Weyl’s theorem [12], at 
first, we review some knowledge about the Weyl’s theorem. 

Theorem 2.1 (Weyl 1912). Let nnRBA ×∈,  be symmetric matrices 

with eigenvalues ( ) ( ) ( )AAA nλ≥≥λ≥λ L21  and ( ) ( ) ≥≥λ≥λ LBB 21  
( ),Bnλ  respectively. Then one has 
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Theorem 2.2. Let nnRA ×∈  be symmetric matrices in AAA cI ∆,,  

are the midpoint and the radius of ,IA  respectively. The eigenvalues of 
above matrices hold that 

( ) ( ) ( ) ( ) ( ).AAAAA c
ii

c
i ∆ρ+λ≤λ≤∆ρ−λ   (5) 

Proof. For [ ],, AAA ∆∆−∈δ  one has ,AAA c δ+=  by Weyl’s 
Theorem 2.1, 

( ) ( ) ( ) ( ) ( ) .,,1,1 niAAAAA c
iin

c
i L=∀δλ+λ≤λ≤δλ+λ  

According to spectral radius definition, we have 

( ) ( ) ( ) ( ),,1 AAAA n δρ−≥δλδρ≤δλ  

whence 

( ) ( ) ( ) ( ) ( ).AAAAA c
ii

c
i δρ+λ≤λ≤δρ−λ  
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As [ ],, AAA ∆∆−∈δ  we get ( ) ( ),AA ∆ρ≤δρ  so, 

( ) ( ) ( ) ( ) ( ).AAAAA c
ii

c
i ∆ρ+λ≤λ≤∆ρ−λ  

Corollary 2.1. Let nnRA ×∈  be symmetric matrices in AAA cI ∆,,  

are the midpoint and the radius of ,IA  respectively. If the eigenvalues of 
cA  and A∆  satisfy 

( ) ( ) ( ) ( ) ,1,,2,1,1 −=∀∆ρ−λ<∆ρ+λ + niAAAA c
i

c
i L  

then the eigenvalue intervals of eigenvalue problem (1) are separating. 

Proof. From Theorem 2.2, the lower bound of i-th eigenvalue exceeds 
the upper bound of (i+1)-th eigenvalue, they are obviously not overlapping. 

Remarks 2.1. If characteristic polynomial of A has the repeated 
roots, eigenvalue intervals are obviously overlapping. 

3. Algorithms for Computing the  
Eigenvalue Bounds 

Let [ ]AAAI ,=  is a real symmetric interval matrix, cA  be the 

midpoint of ,IA  and its eigenvalues be ( ) ( ) ( ).21
c

n
cc AAA λ≥≥λ≥λ L  

Let the characteristic polynomial of IAA ∈  be denoted by ( ),λP  which 

is a continuous function of variables .λ  Algorithm 3.1 is based on the 
ideals in [4], and the algorithm provides the tighter upper bounds to all 
eigenvalues for a given precision .  Here, we choose initial outer upper 
bound according to Theorem 2.2, it will converge faster. The computation 
of the lower bound to all eigenvalues makes the same way. 

Algorithm 3.1. (Characteristic polynomial algorithm) 

1. compute eigenvalues ( ) ( ) ( );21
c

n
cc AAA λ≥≥λ≥λ L  

2. compute eigenvalues ( ) ( ) ( );21 AAA n ∆λ≥≥∆λ≥∆λ L  
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3. determine spectra radius ( ) ( ( ) )AA ini ∆λ=∆ρ = ,,1max L  

4. define [ ( ) ( ) ( ) ( ) ( ) ( )];,,, 21 AAAAAAc c
n

cc ∆ρ+λ∆ρ+λ∆ρ+λ= L  

5. for ni ,,1 L=  

6. Initialize ( ) ( ( ) ( )) ;2icAilb c
i +λ=  

7. Initialize ( ) ( );iciub =  

8. while ( ) ( )( )( )≥− 11 lbub  

9. If ( ) ( ) ( ) ( ) ( ) ( ) ;0maxmin >λ⋅λ ≤λ≤≤λ≤ iiubilbiiubilb PP  

10. ( ) ( ) ( ) ( ) ( ( ) ( )) ;2, c
i Aiubiubilbilbiub λ−−==  

11. else 

12. ( ) ( ) ( ) ( )( ) ;2ilbiubilbilb −+=  

13. end 

14. end 

15. return ub 

Remark 3.1. In step 7, we consider ( ) ( ) ( )AAic c
i ∆ρ+λ=  

ni ,,2,1 L=  as the initial outer upper bounds for eigenvalue intervals. 

In step 9, according to whether the sign of characteristic polynomial ( )λP  

remains unchanged in a given interval, the iterative [ ]ublb,  is gradually 

reduced until its length is less than a given precision .  This theory was 
presented by Rohn in [8]. 

If the radius of IA  is not small, it occurs eigenvalue intervals 
overlapping in all probability. When the eigenvalue intervals occurring 
overlapping, we can not using the sign pattern invariance of characteristic 
polynomial. We can estimate the eigenvalue bounds according to Weyl 
Theorems 2.1 and 2.2. Algorithm 3.2 is based on Weyl theorem. 
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Algorithm 3.2. (Weyl algorithm) 

1. compute eigenvalues ( ) ( ) ( );21
c

n
cc AAA λ≥≥λ≥λ L  

2. compute eigenvalues ( ) ( ) ( );21 AAA n δλ≥≥δλ≥δλ L  

3. for ni ,,1 L=  

4. ( ) { ( ) ( )}AAiub ki
c

kikAA δλ+λ= +−=∆∈δ 1,,1minmax L  

5. ( ) { ( ) ( )}AAilb nki
c

knikAA δλ+λ= +−=∆∈δ ,,maxmin L  

6. end 

7. return nilbub ,,1,, L=  

Remark 3.2. In step 4, we determine upper bound of eigenvalue iλ  

according to (4), that is, we select the smaller upper bound. The same 
reason is for lower bound of eigenvalue in step 5. 

4. Numerical Result 

Example 4.1. (A spring-mass system with four degrees of freedom [3]). 

We consider a spring-mass system with four degrees of freedom as 
shown in Figure 1. Masses are denoted by ,,,, 4321 mmmm  and springs 

are denoted by ,,,, 4321 kkkk  and ,5k  respectively. 

 

Figure 1. A spring-mass system with four degrees of freedom. 

In order to take the form shown in problem (1), let the nominal mass 

matrix cM  and the deviation radius matrix of the mass matrix 
simplified be given, respectively, by 
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( ),1,1,1,1diag=cM  

and 

( ).0,0,0,0diag=∆M  

The nominal stiffness matrix cK  and the deviation radius matrix of the 
stiffness matrix are given, respectively, by 

,
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0300050002000
0020003000



















−
−−

−−
−

=cK  (6) 

and 

.

552500
2545200
0203515
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=∆K  (7) 

Let the upper and lower eigenvalue bounds by using Algorithm 3.2 be 

denoted by iλ  and ,iλ  those in [3] be denoted by iµ  and ,iµ  for 

,4,3,2,1=i  respectively. The results are summarized in Table 1. It 

shows that, the present method can produce the tighter eigenvalue 
bounds as the method in [3] does. The results by Leng in [4], show good 
agreement with Algorithm 3.1. However, in [4] can only deal with the 
case that the eigenvalue intervals do not overlap. Here, we emphasize the 
Weyl’s theorem, which it can obtain all the eigenvalue bounds of 
symmetric matrix. The results show that Algorithm 3.2 can provide 
satisfied eigenvalue bounds. 
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Table 1. Interval eigenvalues by Algorithm 3.2 and the method in [3] 

 iλ  iλ  iµ  iµ  

I
1λ  825.25974 985.06321 815.16148 995.16148 

I
2λ  3309.94664 3469.75011 3299.84838 3479.84838 

I
3λ  6984.55708 7144.36055 6974.45882 7154.45882 

I
4λ  12560.62959 12720.43306 12550.53133 12730.53133 

Example 4.2. Consider the symmetric interval matrix 

,
310
162
021
















−

−
=cA  (8) 

and 

.
242
425
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=∆A  (9) 

Let the upper and lower eigenvalue bounds by using Algorithm 3.2 be 

denoted by iλ  and ,iλ  those by using Theorem 2.2 be denoted by iµ  and 

,iµ  for ,3,2,1=i  respectively. The results are summarized in Table 2.  

Table 2. Interval eigenvalues by Algorithm 3.2 and using Theorem 2.2 

 iλ  iλ  iµ  iµ  

I
1λ  2.5329 16.0881 −2.2298 16.0881 

I
2λ  − 0.0252 7.2107 − 6.3445 11.9734 

I
3λ  − 8.9026 3.0961 − 8.9026 9.4154 

Because the eigenvalue intervals are overlapping, we cannot use Deif’s 
method, Leng’s method, etc. It shows that Algorithm 3.2 can provide more 
accurate eigenvalue bounds. 
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5. Conclusion 

Based on Weyl’s Theorem 2.1, we give some verifiable conditions for 
eigenvalue intervals overlapping or not overlapping. We can obtain 
credible eigenvalue bounds despite some large according to Theorem 2.2. 
The bounds can be good initial bounds for Algorithm 3.1 or for the 
algorithm in [4]. Algorithm 3.2 for estimating eigenvalue bounds of real 
symmetric interval matrix is presented, which can deal with cases 
whether overlapping or not overlapping. Numerical examples show that 
our methods with algorithms are effective and reliable. 
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